Monthly Archives: October 2025

3D Printing A Cheap VR Headset

estimated reading time: 1 min

The modern era of virtual reality really kicked off in earnest just over a decade ago, when the Oculus Rift promised 3D worlds beyond your wildest dreams. Since then, nobody’s been able to come up with a killer app to convince even a mild fraction of consumers to engage with the technology. Still, if you’re keen to tinker, you might like to make your own headset like [CNCDan] has done.

The build is based almost entirely on 3D-printed components and parts sourced from AliExpress. It offers 2880x1440p resolution, thanks to a pair of square 1440×1440 LCD displays, one for each eye, paired with a couple of 34 mm lenses. The headset has adjustable interpupiliary distance so you can dial the view in to properly suit your eyes. The 3D-printed housing is designed to be compatible with headrest pads from the HTC Vive Pro for comfort’s sake. Head tracking is also available, with the inclusion of an IMU and an Arduino onboard. [CNCDan] apparently put the build together for under $150, which is not bad compared to the price of a commercial off-the-shelf unit. Files are on Github for the curious.

[CNCDan] reports good results with the DIY headset, using it primarily with his racing simulator setup. He has had some issues, however, with his LCD screens, which don’t properly run at a 90 Hz refresh rate at full resolution, which is frustrating. It’s an issue he’s still looking into. We’ve seen some other neat VR builds over the years, too. Video after the break.

from wallabag — all feed https://ift.tt/YTB3p2D

An FPGA-Based Mechanical Keyboard

estimated reading time: 1 min

You can buy all kinds of keyboards these days, from basic big-brand stuff to obscure mechanical delicacies from small-time builders. Or, you can go the maker route, and build your own. That’s precisely what [Lambert Sartory] did with their Clavier build.

This build goes a bit of a different route to many other DIY keyboards out there, in that [Lambert] was keen to build it around an FPGA instead of an off-the-shelf microcontroller. To that end, the entire USB HID stack was implemented in VHDL on a Lattice ECP5 chip. It was a heavy-duty way to go, but it makes the keyboard quite unique compared to those that just rely on existing HID libraries to do the job. This onboard hardware also allowed [Lambert] to include JTAG, SPI, I2C, and UART interfaces right on the keyboard, as well as a USB hub for good measure.

As for the mechanical design, it’s a full-size 105-key ISO keyboard with one bonus key for good measure. That’s the coffee key, which either locks the attached computer when you’re going for a break, or resets the FPGA with a long press just in case it’s necessary. It’s built with Cherry MX compatible switches, has N-key rollover capability, and a mighty 1000 Hz polling rate. If you can exceed that by hand, you’re some sort of superhuman.

The great thing about building your own keyboard is you can put in whatever features you desire. If you’re whipping up your own neat interface devices, don’t hesitate to let us know!

from wallabag — all feed https://ift.tt/Rtarldw

3D Printed “Book” Demonstrates Mechanical Actions

estimated reading time: 1 min

A book of mechanical actions is a wondrous thing — mechanically inclined children have lost collective decades pouring over them over the generations. What could possibly be better? Why, if the mechanisms in the book were present, and moved! That’s exactly what [AxelMadeIt] produced for a recent video.

Being just four pages, you might argue this is but a pamphlet. But since it takes up a couple inches of shelf space, it certainly looks like a book from the outside, which is exactly what [AxelMadeIt] was going for. To get a more book-like spine, his hinge design sacrificed opening flat, but since the pages are single-sided, that’s no great sacrifice.

At only 6 mm (1/4″) thick, finding printable mechanisms that could actually fit inside was quite a challenge. If he was machining everything out of brass, that would be room for oodles of layers. But [Axel] wanted to print the parts for this book, so the mechanisms need to be fairly thick. One page has a Roberts linkage and a vault-locking mechanism, another has planetary gears, with angled teeth to keep them from falling out. Finally, the first page has a geneva mechanism, and an escapement, both driven by a TPU belt drive.

All pages are driven from an electric motor that is buried in the last page of the “book”, along with its motor, battery, and a couple of micro-switches to turn it on when you open the book and off again when you reach the last page. Rather than a description of the mechanisms, like most books of mechanical actions, [Axel] used multi-material printing to put lovely poems on each page. A nice pro-tip is that “Futura”, a font made famous by flying to the moon, works very well when printed this way. If you just want to watch him flip through, jump to 8:00 in the video.

This reminds us of another project we once featured, which animated 2100 mechanical mechanisms. While this book can’t offer near that variety, it makes up for it in tactility.

from wallabag — all feed https://ift.tt/BKb7G0R